Time-inconsistent mean-field stopping problems: A regularized equilibrium approach

Xiang Yu¹ Fengyi Yuan²

¹Department of Applied Mathematics, The Hong Kong Polytechnic University

²Department of Mathematical Sciences, Tsinghua University

Updated on: June 26, 2024

Contents

1 Motivation

- 2 Problem formulation
- 3 Main results
- 4 Relations between mean-field problems and *N*-agent problems

Motivation 0●0000

Discount

- For multi-period decision problems, we need to consider discount for delayed reward. This is even more important when considering stopping decision.
 - Agent-implied discount: the impatience. E.g.: paying you 100\$ tomorrow is indifferent to paying you 100 δ \$ right now because you hate waiting for one day. $\delta \in (0, 1]$ is your one-day discount factor.
 - Market-implied discount: usually related to the interest rate.
 - Exponential discount: discount factors are constants among every delayed period. Hence, after k periods, the reward is discounted by δ^k .
- Cumulative discounted reward formulation for an MDP:

$$J(x;\pi) = \mathbb{E}^{x,\pi} \sum_{t=0}^{\infty} \frac{\delta^t r(X_t)}{\delta^t}.$$

Non-exponential discount

Exponential discount: $\delta_1 = \delta_2 = \cdots = \delta_k = \cdots = \delta$, and $\delta(k) := \prod_{j=1}^k \delta_j = \delta^k$. Here δ_k is the one-period discount rate at period k-1. That is to say, each delayed period is discounted equally. But...

- There is no (practical) reason to assume that impatience is homogenous in time.
- There is no reason to anticipate that future interest rates equal to the spot rate.

Consistent planning

The most important consequence of considering exponential discount:

DPP

With
$$Q^{\pi}(x, a) := J(x; a \oplus_1 \pi)$$
, we have

$$Q^{\pi}(x, a) = r(x) + \delta \mathbb{E}^{x, a} Q^{\pi}(X_1, \pi(X_1)).$$

With $V(x) = \sup_{\pi} Q^{\pi}(x, \pi(x)) = \sup_{\pi} J(x; \pi)$, we have

$$V(x) = r(x) + \delta \sup_{a} \mathbb{E}^{x,a} V(X_1).$$

- We have an equation about V! Solving V and choosing $\pi(x) = \arg \max_{a} \mathbb{E}^{x,a} V(X_1)$ gives the optimal policy.
- The optimal policy is time-consistent. It is always "pure-strategy".

Fengyi Yuan (THU)

Consistent planning

But with non-exponential discount...

Violation of DPP

If $J(x; \pi) = \mathbb{E}^{x,\pi} \sum_{t=0}^{\infty} \delta(t) r(X_t)$ and $Q^{\pi}(x, a) = J(x; a \oplus_1 \pi)$, we have:

$$Q^{\pi}(x,a) = r(x) + \mathbb{E}^{x,a\oplus_1\pi} \sum_{t=1}^{\infty} \delta(t)r(X_t)$$

= $r(x) + \mathbb{E}^{x,a}\mathbb{E}^{X_1,\pi} \sum_{t=1}^{\infty} \delta(t)r(X_{t-1})$
= $r(x) + \mathbb{E}^{x,a}\mathbb{E}^{X_1,\pi} \sum_{t=0}^{\infty} \frac{\delta(t+1)r(X_t)}{\delta(t+1)r(X_t)}$
= $r(x) + \mathbb{E}^{x,a}Q_1^{\pi}(X_1,\pi(X_1)).$

Want to maximize $Q^{\pi} \to \text{need } Q_1^{\pi} \to \text{need } Q_2^{\pi} \to \cdots$

Fengyi Yuan (THU)

Consistent planning

- Maximizing J(x; π) still makes sense provided that future selves discount by δ₂, δ₃, · · · , δ_{k+1}, · · · However, k is the delayed time instead of the calendar time. Future selves still discount by δ₁, δ₂, · · ·
- What does $\sup_{\pi} J(x; \pi)$ mean at $k \ge 1$?
- Consistent planning in economics:

The equilibrium policy

Find π^* , such that for any x, a,

$$J(x; a \oplus_1 \pi^*) \le J(x; \pi^*).$$

Equivalently:

$$\pi^*(x) \in \arg\max_a Q^{\pi^*}(x,a)$$

Contents

1 Motivation

- 2 Problem formulation
- 3 Main results
- 4 Relations between mean-field problems and *N*-agent problems

• The state dynamics:

$$\mu_{k+1} = T(\mu_k, \xi^{\phi_k(\mu_k)}, Z^0),$$

where $\xi^{\phi_k(\mu_k)} \sim \mathcal{B}(\phi_k(\mu_k))$, and Z^0 is the common noise. • To model stopping decisions:

$$T(\mu, a, z) = \begin{cases} T_0(\mu, z), & a = 0, \\ \triangle, & a = 1. \end{cases}$$

- We always denote by $\mathbb{P}^{\mu,\phi}$ (and $\mathbb{E}^{\mu,\phi}$) the probability (and its expectation) induced by initial population distribution μ and the (feed-back) policy ϕ .
- We consider a reward function r, and a general discount function δ .

- The policy (if stationary in time) $\phi: \overline{S} \to [0, 1]$ assigns to each (observed) state distribution μ a **probability** to stop. E.g., at each step you flip a biased coin and choose to stop when you get heads. The designs of such coins depend on observations (feed-back control!).
- Under the policy ϕ and observation μ , you get an expected cumulative discounted reward given by

$$J^{\phi}(\mu) := \sum_{k=0}^{\infty} \delta(k) \mathbb{E}^{\mu, \phi} r(\mu_k) \phi_k(\mu_k).$$

The rewards

Why this form of reward?

Lemma

Let $\tilde{\mathbb{P}}^{\mu}$ be the probability measure induced by the transition rule $\mu_{k+1} = T_0(\mu_k, Z^0)$ and the initial condition $\mu_0 = \mu$, and let $\tilde{\mathbb{E}}^{\mu}$ denote its expectation. Then for any $\phi \in \mathcal{F}$, $\mu \in \bar{S}$ and $k \in \mathbb{T}$, it holds that

$$\mathbb{E}^{\mu,\phi}r(\mu_k)\phi_k(\mu_k) = \tilde{\mathbb{E}}^{\mu}r(\mu_k)\phi_k(\mu_k)\prod_{j=0}^{k-1}(1-\phi_j(\mu_j)).$$

It is assumed by convention that $\prod_{k=0}^{-1} \equiv 1$.

- Blue part: the probability of stopping at the current step...
- Yellow part: the probability that the system has not been stopped yet.

Fengyi Yuan (THU)

The relaxed equilibrium

Definition

 $\phi^* \in \mathcal{F}_S$ is said to be a *relaxed equilibrium* if,

 $J^{\psi \oplus_1 \phi^*}(\mu) \le J^{\phi^*}(\mu), \forall \mu \in \bar{S}, \psi \in [0, 1].$

- The same definition as the one in Motivation part.
- If you follow some policy ϕ^* in the future, it is "optimal" to follow it now!
- Sequential game in finite horizon problem V.S. simultaneous game in infinite horizon problem.
- We do not have a "terminal" to start with when using backward induction approach.

Contents

1 Motivation

- 2 Problem formulation
- 3 Main results
- 4 Relations between mean-field problems and *N*-agent problems

Equilibria = fixed points!

A simple derivation from Markov property:

$$\begin{aligned} J^{\psi \oplus_1 \phi^*}(\mu) = & r(\mu)\psi + \mathbb{E}^0 \tilde{J}^{\phi^*}(T(\mu, \xi^{\psi}, Z^0)) \\ = & r(\mu)\psi + (1-\psi)\mathbb{E}^0 \tilde{J}^{\phi^*}(T_0(\mu, Z^0)), \end{aligned}$$

with (think about Q_1^{π} !)

$$\tilde{J}^{\phi^*}(\mu) = \sum_{k=0}^{\infty} \delta(1+k) \mathbb{E}^{\mu,\phi^*} r(\mu_k) \phi^*(\mu_k).$$

Lemma

 ϕ^* is a relaxed equilibrium if and only if it solves the fixed point problem:

$$\phi^{*}(\mu) \in \underset{\psi \in [0,1]}{\arg \max} \left\{ r(\mu)\psi + (1-\psi)\mathbb{E}^{0}\tilde{J}^{\phi^{*}}(T_{0}(\mu, Z^{0})) \right\},\$$

Fengyi Yuan (THU)

June 26, 2024 14 / 34

Equilibria = fixed points!

The optimization problem is simple so that we can solve it explicitly:

$$\phi^*(\mu) = \begin{cases} 1, & r(\mu) > f_{\phi^*}(\mu), \\ 0, & r(\mu) < f_{\phi^*}(\mu), \end{cases}$$

where $f_{\phi^*}(\mu) := \mathbb{E}^0 \tilde{J}^{\phi^*}(T_0(\mu, Z^0))$ (the reward if we choose to continue).

- The indifference principle of Game Theory: if a mixed strategy is equilibrium, pure strategies with **positive probability** are indifferent! → only mix between indifferent strategies.
- Definition in Huang and Zhou (2019):

$$\phi^*(\mu) = \begin{cases} 1, & r(\mu) \ge f_{\phi^*}(\mu), \\ 0, & r(\mu) < f_{\phi^*}(\mu), \end{cases}$$

Equilibria = fixed points!

The next task: how do we solve the fixed point of

$$\phi^*(\mu) = \begin{cases} 1, & r(\mu) > f_{\phi^*}(\mu), \\ 0, & r(\mu) < f_{\phi^*}(\mu). \end{cases}$$

- Even proving the existence is not straightforward.
 Kakutani–Glicksberg–Fan theorem must be used (if possible).
- We choose to use the method of regularization, which produces a Lipschitz approximation to (possibly discontinuous) ϕ^* .
- Existence of the relaxed equilibrium is obtained by the vanishing of regularization.

The regularization

We shall consider the following regularization to the original problem:

$$\begin{split} J_{\lambda}^{\boldsymbol{\phi}}(\mu) &:= \sum_{k=0}^{\infty} \delta_{\lambda}(k) \mathbb{E}^{\mu, \boldsymbol{\phi}} \left[r(\mu_{k}) \phi_{k}(\mu_{k}) + \lambda \mathcal{E}(\phi_{k}(\mu_{k})) \right], \\ \tilde{J}_{\lambda}^{\boldsymbol{\phi}}(\mu) &:= \sum_{k=0}^{\infty} \delta_{\lambda}(k+1) \mathbb{E}^{\mu, \boldsymbol{\phi}} \left[r(\mu_{k}) \phi_{k}(\mu_{k}) + \lambda \mathcal{E}(\phi_{k}(\mu_{k})) \right], \end{split}$$

where $\mathcal{E}(\phi) := -\phi \log \phi - (1 - \phi) \log(1 - \phi)$, and $\delta_{\lambda}(k) := \delta(k) \left(\frac{1}{1+\lambda}\right)^{k^2}$.

- The entropy regularization is to encourage exploration (so the resulted equilibria ϕ_{λ} are inherently of **mixed strategy**).
- The choice of δ_{λ} is purely technical, and the exponent k^2 is not special (subject to certain technical constraints).

Fengyi Yuan (THU)

Regularized equilibria

- Regularized equilibria are defined in the same way as relaxed equilibria, with J replaced by J_{λ} , and \tilde{J} replaced by \tilde{J}_{λ} .
- Another simple derivation from Markov property:

$$\begin{split} f_{\lambda}^{\psi\oplus_{1}\phi^{*}}(\mu) = & r(\mu)\psi - \lambda\psi\log\psi - \lambda(1-\psi)\log(1-\psi) \\ &+ \sum_{k=1}^{\infty} \delta(k)\mathbb{E}^{\mu,\psi}\mathbb{E}^{\mu_{1},\phi^{*}}[r(\mu_{k})\phi(\mu_{k}) - \lambda\mathcal{E}(\phi(\mu_{k}))] \\ = & r(\mu)\psi - \lambda\psi\log\psi - \lambda(1-\psi)\log(1-\psi) \\ &+ (1-\psi)\mathbb{E}^{0}\tilde{J}_{\lambda}^{\phi^{*}}(T_{0}(\mu, Z^{0})). \end{split}$$

Regularized equilibria

• ϕ_{λ} is a regularized equilibrium if and only if it solves

$$\phi_{\lambda}(\mu) \in \operatorname*{arg\,max}_{\psi \in [0,1]} \{ r(\mu)\psi + (1-\psi)\mathbb{E}^{0}\mathcal{T}_{2}^{\lambda}(\phi_{\lambda})(T_{0}(\mu, Z^{0})) \\ - \lambda\psi\log\psi - \lambda(1-\psi)\log(1-\psi) \},$$

with

$$\mathcal{T}_2^{\lambda}(\phi)(\mu) := \tilde{J}_{\lambda}^{\phi}(\mu).$$

• The optimization problem can still be solved explicitly:

$$\begin{split} \phi_{\lambda}(\mu) &= \frac{1}{1 + \exp\left(\frac{1}{\lambda} [\mathbb{E}^{0} \mathcal{T}_{2}^{\lambda}(\phi_{\lambda})(T_{0}(\mu, Z^{0})) - r(\mu)]\right)} \\ &=: \mathcal{T}_{1}^{\lambda} \circ \mathcal{T}_{2}^{\lambda}(\phi_{\lambda})(\mu). \end{split}$$

• ϕ_{λ} is a regularized equilibrium if and only it is a fixed point (Equilibria=Fixed points!) of $\mathcal{T}_1^{\lambda} \circ \mathcal{T}_2^{\lambda}$.

Fengyi Yuan (THU)

Regularized equilibria

 $f_{\phi_{\lambda}}^{\lambda}(\mu) = \mathcal{T}_{2}^{\lambda}(\phi_{\lambda})(\mu) = \mathbb{E}^{0} \tilde{J}_{\lambda}^{\phi^{*}}(T_{0}(\mu, Z^{0})).$

Then, ϕ_{λ} is a regularized equilibrium if and only it solves

$$\phi_{\lambda}(\mu) = \frac{\exp\left(\frac{1}{\lambda}r(\mu)\right)}{\exp\left(\frac{1}{\lambda}r(\mu)\right) + \exp\left(\frac{1}{\lambda}f_{\phi_{\lambda}}^{\lambda}(\mu)\right)}.$$

- The original problem: compare r and f_{ϕ^*} . Choose the one that strictly dominates, mix between two if they are indifferent. Discontinuous policy, bang-bang type (not exactly because mixture exists).
- The regularized problem: choose the **soft-max** between r and $f_{\phi_{\lambda}}^{\lambda}$. Continuous policy, inherently mixed strategy $(\phi_{\lambda} \in (0, 1))$.

Existence of regularized equilibria

Theorem

Under certain technical assumptions (of T_0 , r and Z^0), there exist a regularized equilibrium $\phi_{\lambda} \in \mathcal{F}_S^{\text{Lip}}$ for any regularization parameter $\lambda > 0$.

Proof ideas:

- Prove that $\mathcal{T}_1^{\lambda} \circ \mathcal{T}_2^{\lambda}$ admits a fixed point, using Schauder's theorem.
- Obtain compactness from Arzela-Ascoli. We use Lipschitz continuity with respect to μ , which is guaranteed by the regularization.
- Almost all estimates blow up when $\lambda \to 0!$

Regularized equilibria as ε -equilirbria

Theorem

Under certain technical assumptions (of T_0 , r and Z^0), for any $\varepsilon > 0$, ϕ_{λ} is an ε -equilibrium of the original problem, i.e., for every $\mu \in \overline{S}$,

$$J^{\psi \oplus_1 \phi_\lambda}(\mu) \le J^{\phi_\lambda}(\mu) + \varepsilon, \forall \psi \in [0, 1].$$

provided that λ is sufficiently small.

Proof idea: From definitions of the regularized equilibrium and the total reward without λ , we may write

$$J^{\psi \oplus_1 \phi_{\lambda}}(\mu) \le J^{\phi_{\lambda}}(\mu) + \delta J^{\lambda} + \delta \mathcal{E}^{\lambda}.$$

 δJ^{λ} comes from the regularization of discount function, and $\delta \mathcal{E}^{\lambda}$ comes from the entropy.

Fengyi Yuan (THU)

Existence of relaxed equilibria

Theorem

Under certain technical assumptions (of T_0 , r and Z^0), there exist a relaxed equilibrium $\phi_0 \in \mathcal{F}_S$. Moreover, for any convergent subsequence of $\{\phi_\lambda\}_{\lambda>0}$ (in the sense of weak-* convergence), it converges to ϕ_0 .

Proof ideas:

- Use the Banach-Alaoglu theorem to obtain a candidate relaxed equilibrium.
- Prove the candidate relaxed equilibrium is indeed relaxed equilibrium. Key step: softmax→max. But the limit in the indifference region is not clear! This gives mixed strategy.
- Switch between $\mathbb{P}^{\mu,\phi}$ and $\tilde{\mathbb{P}}^{\mu}$ as appropriate.

Contents

1 Motivation

2 Problem formulation

3 Main results

4 Relations between mean-field problems and *N*-agent problems

The *N*-agent problem (N-MDP)

Consider the *N*-agent problem:

$$\begin{aligned} X_{k+1}^{i,N,\phi} &= T^r \left(X_k^{i,N,\phi}, \frac{1}{N} \sum_{j \in [N]} \delta_{X_k^{i,N,\phi}}, \mathbb{1}_{\{ U_{k+1} \le \phi_N(\vec{X}_k^{N,\phi}) \}}, Z_{k+1}^i, Z_{k+1}^0 \right), \\ X_0^{i,N,\phi} &= \xi^i, \end{aligned}$$

with

$$T^{r}(x,\mu,a,z',z) = \begin{cases} T^{r}_{0}(x,\mu,z',z), & a = 0, \\ \triangle_{S}, & a = 1. \end{cases}$$

- "r" stands for representative agent.
- $\{Z_k^i\}_{i \in [N], k \in \mathbb{T}}$: the idiosyncratic noises. $\{Z_k^0\}_{k \in \mathbb{T}}$: the common noise. $\{U_k\}_{k \in \mathbb{T}}$: the random device (the coin) for the social planner to determine whether to stop or not.

The limit problem (Limit-MDP)

• The total reward of the *N*-agent problem

$$J^{i,N,\phi}(\xi^i) = \sum_{k=0}^{\infty} \delta(k) \mathbb{E}\left[f\left(X_k^{i,N,\phi}, \frac{1}{N} \sum_{j \in [N]} \delta_{X_k^{i,N,\phi}} \right) \phi_N(\vec{X}_k^{N,\phi}) \right]$$

• Consider the limit as $N \to \infty$, we get the trantition

$$\begin{split} X_{k+1}^{i,\phi} &= \ T^r \left(X_k^{i,\phi}, \mathbb{P}^0_{X_k^{i,\phi}}, \mathbb{1}_{\{U_{k+1} \le \phi(\mathbb{P}^0_{X_k^{i,\phi}})\}}, Z_{k+1}^i, Z_{k+1}^0 \right), \\ X_0^{i,\phi} &= \xi^i, \end{split}$$

and the total reward

$$J^{i,\phi}(\xi^i) = \sum_{k=0}^{\infty} \delta(k) \mathbb{E} \left[f \left(X_k^{i,\phi}, \mathbb{P}^0_{X_k^{i,\phi}} \right) \phi(\mathbb{P}^0_{X_k^{i,\phi}}) \right].$$

٠

The convergence result of (N-MDP) \rightarrow (Limit-MDP)

Theorem

Under certain technical assumptions (of T_0^r , f and Z^i), for any given $\phi \in \mathcal{F}_S^{\text{Lip}}$, $k \in \mathbb{T}$, $i \in [N]$ and $\lambda > 0$, we have that

$$\mathbb{E}d(X_{k}^{i,N,\phi}, X_{k}^{i,\phi}) \leq C_{1}(k, L_{5}, \|\phi\|_{\text{Lip}})M_{N}, \\ \mathbb{E}|J_{\lambda}^{i,N,\phi}(\xi^{i}) - J_{\lambda}^{i,\phi}(\xi^{i})| \leq C_{2}(\lambda, L_{5}, L_{6}, L_{7}, \|\phi\|_{\text{Lip}})M_{N},$$

• $J^{i,N,\phi}_{\lambda}$ and $J^{i,\phi}_{\lambda}$ are defined in the same way as $J^{i,N,\phi}$ and $J^{i,\phi}$, with the discount function replaced by

$$\delta_{\lambda} := \delta(k) \left(\frac{1}{1+\lambda}\right)^{k^2}$$
 (only regularize the discount function).

• M_N is the (non-asymptotic) approximation upper bound of empirical measures under Wasserstein metric.

Several remarks on (N-MDP) \rightarrow (Limit-MDP)

- We obtain convergence results under fixed Lipschitz policy, which is sufficient due to the regularization (of (MF-MDP)).
- Similar results for open-loop control problems are obtained in Motte and Pham (2022). Because we consider (feed-back) policies, the Lipschitz continuity of φ seems indispensable. We achieve such a continuity via regularization.
- The constants before C_1 and C_2 depends on λ and $\|\phi\|_{\text{Lip}}$, both of which blow up when $\lambda \to 0$.
- By introducing δ_{λ} , we get in exchange an improved convergence rate from M_N^{γ} ($\gamma \leq 1$) to M_N , comparing to Motte and Pham (2022).

Constructing (MF-MDP) from (Limit-MDP)

We call our original MDP (the one with T_0 , r and states μ , e.t.c.) by (MF-MDP).

Proposition

Take $T_0(\mu, z) := T_0^r(\cdot, \mu, \cdot, z)_{\#}(\mu \times \mathcal{L}(\mathcal{Z})'), \bigtriangleup := \delta_{\bigtriangleup_S}$, and $r(\mu) := \int_S f(x, \mu)\mu(\mathrm{d}x)$. Then, (Limit-MDP) becomes (MF-MDP).

<u>A remark</u>: If S, the state space of (**N-MDP**) or (**Limit-MDP**), is finite, then all technical assumptions are satisfied naturally. But the state space of (**MF-MDP**) is always continuous.

Regularized equilibria of (MF-MDP) as ε -equilibria of (N-MDP)

Theorem

For any $\varepsilon > 0$, ϕ_{λ} is an ε -equilibrium for **(N-MDP)** with N agents, provided that λ is sufficiently small and N is sufficiently large.

Regularized equilibria of (MF-MDP) as ε -equilibria of (N-MDP)

Proof ideas:

• Regularized equilibrium of (MF-MDP):

$$J_{\lambda}^{\psi \oplus_1 \phi_{\lambda}}(\nu_0) \le J_{\lambda}^{\phi_{\lambda}}(\nu_0).$$

Regularization error of (N-MDP):

$$\begin{split} & \frac{1}{N}\sum_{i\in[N]}|J^{i,N,\psi\oplus_1\phi_\lambda}(\xi^i) - J^{i,N,\psi\oplus_1\phi_\lambda}_\lambda(\xi^i)| < \varepsilon, \\ & \text{and} \quad \frac{1}{N}\sum_{i\in[N]}|J^{i,N,\phi_\lambda}(\xi^i) - J^{i,N,\phi_\lambda}_\lambda(\xi^i)| < \varepsilon. \end{split}$$

Approximation error of (N-MDP) to (Limit-MDP):

$$\frac{1}{N}\sum_{i\in[N]}|J_{\lambda}^{i,N,\psi\oplus\phi_{\lambda}}(\xi^{i})-J_{\lambda}^{i,\psi\oplus\phi_{\lambda}}(\xi^{i})|\leq C_{3}M_{N}.$$

A big picture about three MDPs

Figure: Relation among different MDP models.

References

- Y.-J. Huang and Z. Zhou (2019): The Optimal equilibrium for time-inconsistent stopping problems—the discrete-time case. SIAM Journal on Control and Optimization, 57(1), 590-609.
- A. Jaśkiewicz and A. S. Nowak (2021): Markov decision processes with quasi-hyperbolic discounting. *Finance and Stochastics*, 25(2), 189-229.
- M. Motte and H. Pham (2022): Mean-field Markov decision processes with common noise and open-loop controls. *The Annals of Applied Probability.* 32(20), 1421-1458.

Thank you!

The paper is available at https://arxiv.org/abs/2311.00381.

Contact me at fyuanmath@outlook.com.