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Portfolio Selection: a type of stochastic control problem in
finance

@ Choose some portfolio 7 (the control/policy), obtain the final
endowment X7, which is random;

o Find the 7* such that X7 is the “best”;
@ ...in what sense?
e Mean-variance (MV) criterion:

max C(X}) := {E[X”T’] Var(X%}
e Expected Utility (EU) theory:
max CX7) = E[UX7)]

for some utility function U.
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Dynamic portfolio selection

e Key sturcture that differs dynamic problems from static ones: the
information (e.g., some filtration {7 },c(0,7))-

o At time ¢, when “evaluating” the portfolio 7, the agent should
look at C(X7|F;) instead of naively C(X7): the information is
updated when time flows!

o Consistently optimizing C(X7): pre-committed
problems/solutions in literature; essentially reduced to static
problems.

e For MV problems, if we maximize C(X7|F;) at ¢ € [0, T), the
optimal portfolio should be (modified from Basak and
Chabakauri 2010):
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Expected Utility theory

e Unlike MV, EU is time-consistent because of the tower property:
E{E[U(X7)|F]|Fi} = E[UX)|F] if s > ¢.

@ Can be seen as a /inear functional of probability distribution:
E[U(X7)] = (U, L(X7)).

@ A behavioural economics perspective: linearity gives
independence axiom” .

e Time-consistency is good, but independence axiom is violated in
empirical studies (Allais Paradox).

e — preferences should be represented by nonlinear functional
of probability distribution!

"For a preference >~ defined on distributions, if x> p’, then for any u’ and
pe(0,1],pu+ 1 —pu” =pp' + (1 —p)p".
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Modifications to EUT

Assume that for some (nonlinear) functional g : Py — R, the
preference is represented by g, i.e., for two terminal endowments X
and X', X > X if and only if g(L(X)) > g(L(X)).

@ Rank dependent utility theory (RDUT) (Hu, Jin, and Zhou 2021):

g(Py) = /0 T WBUX) > )dy
0
+ / W(B(UX) > ) — 1] dy.

—00

@ Betweenness preferences (relaxing independence to
betweenness, Chew 1983):

g(Px) = E[U(X, g(Px))].

Another interpretation: an endogenous reference point
(disappointment aversion, e.t.c.).
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Dynamic portfolio choice under nonlinear preferences

o Ideally, we aim to find a 7 to maximize g(]P’S(qTT )" for any
t € [0, 7). Not possible unless g is linear.
e Without the existence of the global optimality, we aim to find a

strategy that ”the investor has no incentive to deviate from”
(quoted from Basak and Chabakauri 2010):

g <IP’;,,,,,) -g <IF’;,W> <0,vt,7.
T T

@ Continuous time model: the deviation happens on an
infinitesimal interval [z, + ¢), let ¢ — 0 and consider the
”marginal incentives” of the agent.

Py i= L(X|F).
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The market

@ An overall filtration F = {F;}o</<7, generated by a
(d + k)-dimensional standard Brownian motion W = (WS, W©°).

@ &: risks driving the stocks. O: “orthogonal” risks, hence
unhedgeable.

o There are d-stocks in the market, and their price processes
{Si,i=1,2,---,d,t € [0,T]} follow the dynamics

dsf = SO (t)de + o' (2) - W],
0 = SO > 0

@ Allow 0, o to be random (and adapted to the overall filtration IF,
allowing stochastic factor models) and even non-Markovian.
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The wealth dynamics

We consider two distinctive formulations of portfolio process 7:

@ When 7 models the proportion of the wealth invested into the
stocks, the self-financing wealth process {X],0 <t < T}
satisfies the following SDE

AXT = X7 wf0(t)dt + X mfo(2) - AW,
)(g = XQ-

@ When 7 models the dollar amount invested into the stocks, the
self-financing wealth process {X7,0 < ¢ < T} satisfies the
following SDE

AXT = 7} 6(t)dt + 7l o (1) - AWS,
Xg = X0-
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Equilibrium porfolios

Recall: aim to find the portfolio from which the agent does not want
to deviate on any infinitesimal interval.

e Deviation: forany ¢ € [0,7),e € (0,T—¢),and ¢ € L>(F;, RY),
the perturbed strategy 7% is given by 7% := T + oL 14.).
We will write X := X" and X>¢ := X™"* for simplicity.

o A portfolio 7 is said to be an equilibirum if

g (P}tf@) -g <P§T> <o(e),Vt, ¢

@ The "regret” of implementing 7 is sublinear.
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Formal definitions

(a) 7 is called a Type-I equilibrium strategy, if for any
t € [0,7) and ¢ € L>®(F,,R?) such that 75 € A for
all sufficiently small € > 0, we have

lim sup é (g (IP’;—(,T,W) —-g (IP’;—(T)) <0.

e—0

(b) 7 is called a Type-II equilibrium strategy if, for a.e.
t € [0,7), any ¢ € L=(F;,RY) such that 7%5¥ € A for
all sufficiently small ¢ > 0, and any ¢ € L>°(F;) with
¢ > 0, we have

1
limsupE | = (g (Phye ) — 2 (P, ) ) ¢| < 0.
im sup [E g\ Pyev ) —8(Px, ) ) 6| <0
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Derivatives with respect to probability measures

Two existing notions in the (mean-field games/controls) literature:

o Lions’ derivative: suppose g is defined on Po, and g is its lifting
to L2(£2). Then we define the (Lions’) derivative of g at y to be
the function d,g(y, ) : RY — RY such that

X +7) —g(X) = E[9ug(p, X) - Y] + o([[ Y 2),

where X ~ p.
e Linear derivatives: a function g—i(-, ) : P(RY) x R? — R such
that

g(u)—g(u)=/01<§<su+<1—s>u,->,u—u>ds.
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Derivatives with respect to probability measures

Our definition (closer to linear derivative): a function
Vg(-,+) : Po x X — R such that:

Sglov+ (1)) = (Vo + (1= s)pn v — )

@ A local version of linear derivative.
@ Need less regularity and intergrability than Lions’ derivative.

@ More convenient for computation than the global definition of
linear derivative.
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Examples

@ A benchmark example: g(u) = (U, u).

glsv+(1=s)u) = s(U,v)+ (1 =s)(U, p) = (U,v) +s(U, v —p).

= ‘ Vg(u,x) = U(x).‘

Note that we do not need the smoothness of U.



Examples

@ The simplest nonlinearity: g(u) = F(E*[U(X)]) = F((U, u)).
glsv+ (1 —s)p) = F<<U7 v)+s(Uv - M>> ,
thus

Lo+ (1—s)p) = F“<<U, V) +s(Uv - u>> U,v— )

ds
= <F <<U,SI/ +(1- s),u)) Uv— ,u> .

= | Vg(u,x) = F ({U, 1)) Ulx).
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A more interesting example

o Implicit function: E[F(X — g(Px))] = 0. Equivalently:

[ Pl gl —o.
R

For pg = sp1 + (1 — s) o, we have

s [ Pl glu)m(@) + (1 -5) | A= gu)olds) =0
R R

Taking derivatives (with respect to s):

/RF(x—g(us (11 —p0)( </F'x— g(pts)) s ( ))g(us)—(l

= | Vg(p,x
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Standing assumptions

Assumption

(a) Vg exists and satisfies certain intergrability.

(b) Vg(u,-) is concave.

(c) There exist functions My : Py X Py — R and
My : Py x Pog — Ry such that

g(p1) — g(po) <My (p1, po)(Ve(po,-), p1 — o)
+ Mo(p1, o), Yo, p1-

o (b) is a natural generalization of the concavity of utility function
in the linear case. (c) is a relaxed concavity of g itself, which is
trivial in linear case.

e Important future directions: remove (b) and/or (¢).
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Heuristic derivation of FOC

We only look at the dollar amount case:
AXT = 7} (0)dt + 7)o (1) - AWS.
Let us also assume concavity for simplicity:

g(u1) — glpo) < (Vg(po,+), u1 — po)-
With ¢ = 0,0,(P%,_, Xr), we have

g (P}gf,Q -g (IP’S(T) < E/[¢'(X7% — X7)].

Recall that in the classical stochastic maximum principle:
&' = U'(Xr) (independent of 7).
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Heuristic derivation of FOC

With p'(s) = E[¢], we suppose”
dp'(s) = aws + an?.
By the equation of X,
AX = Xy) = Lo (s)e (B(s)ds + - dWy).
Apply 1t6’s formula to p’(s)(Xs™% — X), taking (conditional)
expectation to cancel the Brownian motion term, we get

tHe
B X0 = '8, | [ 660+ Jas|
t
Divided by € and let ¢ — 0, we expect:

0(1)p' (1) + o (0)g"° (1) = 0.

"¢"S and ¢"© come from martingale representation. Also, p’ and ¢ are nothing
but the adjoint processes in stochastic maximum principle.
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Verifications theorem

ZY,S ZY ,O

For any random variable Y, denote by and the processes
appearing in the martingale representation, or equivalently, the Z-term
in the BSDE representation.

Theorem (The verification theorem: dollar amount strategies)

Suppose §' = &CVg(PS(T,)_(T) or& e 3ng(IP’§—(T,)_(T) in the
non-smooth case. Under certain technical assumptions on 0, o, 7,
Es[€Y], 78S My and My, if we have

ROE(E]+25°() =0} e (0,7,

then 7 is a Type-1 or Type-1I equilibrium, depending on the technical
assumptions we impose.
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Verification theorems

Theorem (The verification theorem: proportion strategies)

Suppose &' = 8ng(IP’3—(T,)_(T) oré e 8ng(IP’§(T,XT) in the
non-smooth case. Under certain technical assumptions on 0, o, T, £,
Es[X7¢, 7%€S My and My, if we have

(k) — o ()7 )E[Xr] + 25785 (1) = 0|, t€0,T],

then 7 is a Type-I or Type-1I equilibrium, depending on the technical
assumptions we impose.
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EU and MV

e EU example: Suppose we are in the dollar amount case, the
market is complete and U is smooth (say, exponential utility).
Then &' = U'(X7), and
FOCs zV'Y = _w()E,[U (X7)] & Ey[U (X7)] = AY,, with ¥
the (unique) pricing kernel: dYy; = —k(s)YdW. Thus,

)_(T = U(_l)()\YT).

® MV example: Because g(Px) = E[X] — JE[X?] + 2 (E[X])?, we

have 0,Vg(Py,x) = 1 — yx + vE[X], and

& =1 — X+ B [Xr], ZES(s) = — 255 (s).

Thus, FOC turns into a simple form Z¥7S (1) = # This
reproduces results in Basak and Chabakauri 2010.
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New examples: betweenness preferences

Let us consider a g determined by

2 [ ()| =0

where F : (0,00) — R is smooth, increasing, concave, and F(1) = 0.

e g(Py) is in the scale of certainty equivalent of X, because
g (5x) =X

@ g has the positive homogeneity: g(Pyx) = Ag(Px) for A > 0;

e Taking F' = U, the CRRA utility function, we obtain the
(certainty equivalent of) EU preference: g(Py) = U, YEU,(X)).
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New examples: betweenness preferences

Proposition

g satisfies the standing assumptions, and

) g(w)? ‘
8/ foe v (5 ) mldy)

X

Vﬁmw=F<

Idea (assume deterministic 6 and o for explicit solutions):
@ Make an ansatz of the form of 7 (hence X7):
7, = (o1(¢))ta, t€0,T], where a is unknown and
deterministic.

e Express g(IP’g(T) in terms of a with a (implicit but known)
function H.

@ Use the FOC to obtain an equation (ODE in our case) of a and
solve it.
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New examples: betweenness preferences

Use the form of derivative:
e Xi (Xr/g(PL,))g(®L,)
7§ = — — .
]Et |:XTF/ (XT/g(]P)%(T))}

Use the FOC:

Z)?TF/ (XT/g(PE‘(T)) (Z)

a, = k(t) +
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New examples: betweenness preferences

Denote A(t ft |las|?ds. Because
T v S alk(s)ds—14
Xr = Xelt wr&4=340R( 1),
where R(, T) ~ eV A8 and ¢ is standard normal. Suppose we can

solve from the definition of g a function / such that H(y) = g(P, ),
then from positive homogeneity we have

g(Pl ) = Xl @ rO= 340 a1,

—

= Xl O340 VA (/308 14 ()
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New examples: betweenness preferences

Use It6’s formula to compute Z:
27 (3/2®y)

:j(teLT aIn(r)dr— %A(t)E

ENZIOLS VAW
TH(AW) <H<A<z>>>>]“’
FOC =
@ = (OGAW) |, € [0.7],
with

_ HO) B [eCF (V% /H))]
TR [AVEF (e HY))]

y>0.
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New examples: betweenness preferences

We transform the equation of a to an ODE:

A'(1) = —|k(0)*G(4(1)*, t€]0, 1),
A(T) = 0.

An autonomous ODE (after appropriate time change) with explicit

solution: ;
-1 (/ ]m(s)]st> |
t

Here, g( = fg ﬁdy, x € [0, 00] and we assume that
) > fo s)|2ds.
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Conclusion of the first example

Proposition

If 0, o are deterministic and g is the CRRA betweenness preference,
then an equilibrium portfolio is given by

7 = (o7 () k()G (gl (/tTlﬁ;(s)Pds)) , teo,7),

provided that G(co) > fOT |#(s)|ds.

v

o If F=U, fory >0, G(y) = 1/y = 7 is the Merton’s solution;

o If F= [° U,F(dvy) (mixed CRRA utility) for some compactly
supported distribution F, we can prove that G(co) = oo.
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New examples: weighted utility

We consider a g, in which the distribution of terminal endowment X is
weighted via a decreasing function of the realization of X:

_ EXtr X7
&) = T Epe]

e To make g monotone and concave, we require —1 < v < 0,
y<p<~y+L
@ Decreasing weight function: put more weights on bad scenarios.

o Extensions to other types of weight functions are possible.
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New examples: weighted utility

Let g be given by weighted utility. Then standing assumptions are
satisfied. Moreover,

1 ‘ xl=pt7 fooo x7 pu(dx) — x7 fOOO xl_p+7,u(dx)'
1=» (o= x1n(dx)®

Next question: how to transform FOC to something we can solve?
Both powers of terminal endowments should be important:

Ve(p,x) =

Yi(s) == E[Xf), Zi(s) = 2 (),

withry = v, 1 =1—p+1.
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New examples: weighted utility

Use the form of derivative:

roXPE(X] — m X E (X7
1-p)Ef7F])>

B el - X2 Ya(s) Y1 () + M Y1 (s) Ya(2) ’

Xr€' = X0, Ve(Pl, , Xp) =

Yl(t)2
= E,X7¢] = 28 and  Z%€ () — >‘2Z2(f)Y1(21ﬂ(Lt))\2121(f)Y2(t)_
Use FOC:
o ()7 = k(1) + XaZo (1) + MZy1 (1),
in which
. — 1—
Zi(s) = Zi(s)/Yi(s), A1 = ﬁ do = ﬁ;%
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New examples: weighted utility

How to determine Z; and Z»? Consider X = log X, f/l =logY;, we
have the following FBSDE:
“ 1 . ~
dYi(s) = —i(Z,-(s))st + Zi(s)dWy, i=1,2,
Yl(T) = I’lj(T, ?Q(T) = }”25(7",
R 1
dX; = (70(s) — §U(S)27‘r32)ds + o(s)7(s)d Wy,
j(o = long.

We can now plug FOC into the forward equatlon and get a BSDE
(w1thout a forward one) with respect to ¥; = ¥; — r;X, and solve Z,
Zj from this (quadratic) BSDE.



Examples
0000000000000 e0

New examples: weighted utility

Proposition

Let g be given by weighted utility. Then a Type-1I equilibrium is given

by
1

k(1) +
p—2y p—2y

in which Z1 and Zo is a solution of

[)\121 (f) aF )\222 (t)],

o(t)ym =

dYi(s) = — % [25)10'2(s) + e1,2i()w(s)
—}—C,i’iZ,iIQ(S) -+ bi|l’i(S)|2] ds
+ Zi(s)dWy, i = 1,2,

Y1(T) =Y»(T) =0,
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New examples: weighted utility

Well-posedness of the QBSDE?

@ The system of QBSDE is more difficult than the
one-dimensional equation.

@ Our system of QBSDE is fully quadratic in the sense that in each
equation, both components of Z are in quadratic orders. Existing
results are not directly applicable.

@ To ensure the existence and/or uniqueness, we need to impose
certain smallness condition to validate contraction arguments. To
this end, © := fo |k(s)|?ds and V(©) := sup, [|© — E,[6]]|c»
we suppose V(0©) is small: the market price of risk is not ”’so
random”.

For any sufficiently small o > 0, there exists Vy > 0 such that if
V(©) < Vo, then the OBSDE admits a unique solution
(Y,2) € (L=(F,R))? x (Hipyo)® with | Zl|smo < e

= = = =
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