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Portfolio Selection: a type of stochastic control problem in
finance

Choose some portfolio π (the control/policy), obtain the final
endowment Xπ

T , which is random;
Find the π∗ such that Xπ∗

T is the ”best”;
...in what sense?

Mean-variance (MV) criterion:

max C(Xπ
T ) :=

{
E[Xπ

T ]−
γ

2
Var(Xπ

T )
}
;

Expected Utility (EU) theory:

max C(Xπ
T ) := E[U(Xπ

T )]

for some utility function U.
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Dynamic portfolio selection

Key sturcture that differs dynamic problems from static ones: the
information (e.g., some filtration {Ft}t∈[0,T]).
At time t, when ”evaluating” the portfolio π, the agent should
look at C(Xπ

T |Ft) instead of naively C(Xπ
T): the information is

updated when time flows!
Consistently optimizing C(Xπ

T): pre-committed
problems/solutions in literature; essentially reduced to static
problems.
For MV problems, if we maximize C(Xπ

T |Ft) at t ∈ [0, T), the
optimal portfolio should be (modified from Basak and
Chabakauri 2010):

πt,∗
s =

µ

γσ2

ξs
ξt
e(

µ
σ )

2
(T−s).
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Expected Utility theory

Unlike MV, EU is time-consistent because of the tower property:
E{E[U(XT)|Fs]|Ft} = E[U(Xt)|Ft] if s > t.
Can be seen as a linear functional of probability distribution:
E[U(XT)] = ⟨U,L(XT)⟩.
A behavioural economics perspective: linearity gives
independence axiom*.
Time-consistency is good, but independence axiom is violated in
empirical studies (Allais Paradox).
−→ preferences should be represented by nonlinear functional
of probability distribution!

*For a preference ≻ defined on distributions, if µ ≻ µ′, then for any µ′′ and
p ∈ [0, 1], pµ+ (1− p)µ′′ ≻ pµ′ + (1− p)µ′′.
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Modifications to EUT

Assume that for some (nonlinear) functional g : P0 → R, the
preference is represented by g, i.e., for two terminal endowments X
and X′, X ≻ X′ if and only if g(L(X)) ≥ g(L(X′)).

Rank dependent utility theory (RDUT) (Hu, Jin, and Zhou 2021):

g(PX) =

∫ ∞

0
w(P(U(X) > y))dy

+

∫ 0

−∞
[w(P(U(X) > y))− 1] dy.

Betweenness preferences (relaxing independence to
betweenness, Chew 1983):

g(PX) = E[U(X, g(PX))].

Another interpretation: an endogenous reference point
(disappointment aversion, e.t.c.).
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Dynamic portfolio choice under nonlinear preferences

Ideally, we aim to find a π to maximize g(Pt
Xπ
T
)* for any

t ∈ [0, T). Not possible unless g is linear.
Without the existence of the global optimality, we aim to find a
strategy that ”the investor has no incentive to deviate from”
(quoted from Basak and Chabakauri 2010):

g
(
Pt
Xt,π

′
T

)
− g

(
Pt
Xπ∗
T

)
≤ 0, ∀t, π′.

Continuous time model: the deviation happens on an
infinitesimal interval [t, t+ ε), let ε → 0 and consider the
”marginal incentives” of the agent.

*Pt
X := L(X|Ft).
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The market

An overall filtration F = {Ft}0≤t≤T, generated by a
(d+ k)-dimensional standard Brownian motionW = (WS ,WO).
S: risks driving the stocks. O: ”orthogonal” risks, hence
unhedgeable.
There are d-stocks in the market, and their price processes
{Sit, i = 1, 2, · · · , d, t ∈ [0, T]} follow the dynamics{

dSit = Sit[θi(t)dt+ σi(t) · dWS
t ],

Si0 = si0 > 0,

Allow θ, σ to be random (and adapted to the overall filtration F,
allowing stochastic factor models) and even non-Markovian.
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The wealth dynamics

We consider two distinctive formulations of portfolio process π:
When π models the proportion of the wealth invested into the
stocks, the self-financing wealth process {Xπ

t , 0 ≤ t ≤ T}
satisfies the following SDE{

dXπ
t = Xπ

t π
†
t θ(t)dt+ Xπ

t π
†
t σ(t) · dWS

t ,

Xπ
0 = x0.

When π models the dollar amount invested into the stocks, the
self-financing wealth process {Xπ

t , 0 ≤ t ≤ T} satisfies the
following SDE{

dXπ
t = π†

t θ(t)dt+ π†
t σ(t) · dWS

t ,

Xπ
0 = x0.
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Equilibrium porfolios

Recall: aim to find the portfolio from which the agent does not want
to deviate on any infinitesimal interval.

Deviation: for any t ∈ [0, T), ε ∈ (0, T− t), and φ ∈ L∞(Ft,Rd),
the perturbed strategy π̄t,ε,φ is given by π̄t,ε,φ := π̄ + φ1[t,t+ε).
We will write X̄ := Xπ̄ and X̄t,ε,φ := Xπ̄t,ε,φ for simplicity.
A portfolio π̄ is said to be an equilibirum if

g
(
Pt
X̄t,ε,φT

)
− g

(
Pt
X̄T

)
≤ o(ε), ∀t, φ

The ”regret” of implementing π̄ is sublinear.
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Formal definitions

Definition

(a) π̄ is called a Type-I equilibrium strategy, if for any
t ∈ [0, T) and φ ∈ L∞(Ft,Rd) such that π̄t,ε,φ ∈ A for
all sufficiently small ε > 0, we have

lim sup
ε→0

1

ε

(
g
(
Pt
X̄t,ε,φT

)
− g

(
Pt
X̄T

))
≤ 0.

(b) π̄ is called a Type-II equilibrium strategy if, for a.e.
t ∈ [0, T), any φ ∈ L∞(Ft,Rd) such that π̄t,ε,φ ∈ A for
all sufficiently small ε > 0, and any ζ ∈ L∞(Ft) with
ζ ≥ 0, we have

lim sup
ε→0

E
[
1

ε

(
g
(
Pt
X̄t,ε,φT

)
− g

(
Pt
X̄T

))
ζ

]
≤ 0.
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Derivatives with respect to probability measures

Two existing notions in the (mean-field games/controls) literature:
Lions’ derivative: suppose g is defined on P2, and g̃ is its lifting
to L2(Ω). Then we define the (Lions’) derivative of g at µ to be
the function ∂µg(µ, ·) : Rd → Rd such that

g̃(X+ Y)− g̃(X) = E[∂µg(µ,X) · Y] + o(∥Y∥L2),

where X ∼ µ.
Linear derivatives: a function δg

δµ(·, ·) : P(Rd)× Rd → R such
that

g(ν)− g(µ) =
∫ 1

0

⟨
δg
δµ

(sν + (1− s)µ, ·), ν − µ

⟩
ds.
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Derivatives with respect to probability measures

Our definition (closer to linear derivative): a function
∇g(·, ·) : P0 × X → R such that:

d
dsg(sν + (1− s)µ) = ⟨∇g(sν + (1− s)µ, ·), ν − µ⟩.

A local version of linear derivative.
Need less regularity and intergrability than Lions’ derivative.
More convenient for computation than the global definition of
linear derivative.
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Examples

A benchmark example: g(µ) = ⟨U, µ⟩.

g(sν+(1−s)µ) = s⟨U, ν⟩+(1−s)⟨U, µ⟩ = ⟨U, ν⟩+s⟨U, ν−µ⟩.

=⇒ ∇g(µ, x) = U(x).

Note that we do not need the smoothness of U.
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Examples

The simplest nonlinearity: g(µ) = F(Eµ[U(X)]) = F(⟨U, µ⟩).

g(sν + (1− s)µ) = F

(
⟨U, ν⟩+ s⟨U, ν − µ⟩

)
,

thus

d
dsg(sν + (1− s)µ) = F′

(
⟨U, ν⟩+ s⟨U, ν − µ⟩

)
⟨U, ν − µ⟩

=

⟨
F′

(
⟨U, sν + (1− s)µ⟩

)
U, ν − µ

⟩
.

=⇒ ∇g(µ, x) = F′(⟨U, µ⟩)U(x).
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A more interesting example

Implicit function: E[F(X− g(PX))] = 0. Equivalently:∫
R
F(x− g(µ))µ(dx) = 0.

For µs = sµ1 + (1− s)µ0, we have

s
∫
R
F(x− g(µs))µ1(dx) + (1− s)

∫
R
F(x− g(µs))µ0(dx) = 0

Taking derivatives (with respect to s):∫
R
F(x− g(µs))(µ1−µ0)(dx)−

(∫
R
F′(x− g(µs))µs(dx)

)
ġ(µs) = 0.

=⇒ ∇g(µ, x) =
F(x− g(µ))∫

R F′(x− g(µ))µ(dx) .
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Standing assumptions

Assumption
(a) ∇g exists and satisfies certain intergrability.
(b) ∇g(µ, ·) is concave.
(c) There exist functions M0 : P0 × P0 → R and

M1 : P0 × P0 → R+ such that

g(µ1)− g(µ0) ≤M1(µ1, µ0)⟨∇g(µ0, ·), µ1 − µ0⟩
+M0(µ1, µ0), ∀µ0, µ1.

(b) is a natural generalization of the concavity of utility function
in the linear case. (c) is a relaxed concavity of g itself, which is
trivial in linear case.
Important future directions: remove (b) and/or (c).
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Heuristic derivation of FOC

We only look at the dollar amount case:

dXπ
t = π†

t θ(t)dt+ π†
t σ(t) · dWS

t .

Let us also assume concavity for simplicity:

g(µ1)− g(µ0) ≤ ⟨∇g(µ0, ·), µ1 − µ0⟩.

With ξt = ∂x∂µg(Pt
X̄T
, X̄T), we have

g
(
Pt
X̄t,ε,φT

)
− g

(
Pt
X̄T

)
≤ Et[ξ

t(X̄t,ε,φ
T − X̄T)].

Recall that in the classical stochastic maximum principle:
ξt = U′(X̄T) (independent of t).
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Heuristic derivation of FOC

With pt(s) = Es[ξ
t], we suppose*

dpt(s) = qt,S(s)dWS
s + qt,O(s)dWO

s .

By the equation of X,

d(X̄t,ε,φ
s − X̄s) = 1[t,t+ε)(s)φ†(θ(s)ds+ σ(s)dWS

s ).

Apply Itô’s formula to pt(s)(X̄t,ε,φ
s − X̄s), taking (conditional)

expectation to cancel the Brownian motion term, we get

Etξ
t[(X̄t,ε,φ

T − X̄T)] = φ†Et

[∫ t+ε

t
(θ(s)pt(s) + σ(s)qt,S(s))ds

]
.

Divided by ε and let ε → 0, we expect:

θ(t)pt(t) + σ(t)qt,S(t) = 0.

*qt,S and qt,O come from martingale representation. Also, pt and qt are nothing
but the adjoint processes in stochastic maximum principle.
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Verifications theorem

For any random variable Y, denote by ZY,S and ZY,O the processes
appearing in the martingale representation, or equivalently, the Z-term
in the BSDE representation.

Theorem (The verification theorem: dollar amount strategies)
Suppose ξt = ∂x∇g(Pt

X̄T
, X̄T) or ξt ∈ ∂x∇g(Pt

X̄T
, X̄T) in the

non-smooth case. Under certain technical assumptions on θ, σ, π̄,
Es[ξ

t], Zξt,S , M0 and M1, if we have

κ(t)Et[ξ
t] + Zξ

t,S(t) = 0 , t ∈ [0, T],

then π̄ is a Type-I or Type-II equilibrium, depending on the technical
assumptions we impose.
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Verification theorems

Theorem (The verification theorem: proportion strategies)
Suppose ξt = ∂x∇g(Pt

X̄T
, X̄T) or ξt ∈ ∂x∇g(Pt

X̄T
, X̄T) in the

non-smooth case. Under certain technical assumptions on θ, σ, π̄, ξt,
Es[X̄Tξ

t], ZX̄Tξt,S , M0 and M1, if we have

(κ(t)− σ†(t)π̄t)Et[X̄Tξ
t] + ZX̄Tξ

t,S(t) = 0 , t ∈ [0, T],

then π̄ is a Type-I or Type-II equilibrium, depending on the technical
assumptions we impose.
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EU and MV

EU example: Suppose we are in the dollar amount case, the
market is complete and U is smooth (say, exponential utility).
Then ξt = U′(X̄T), and
FOC⇔ ZU

′(X̄T)
t = −κ(t)Et[U′(X̄T)] ⇔ Es[U′(X̄T)] = λYs, with Y

the (unique) pricing kernel: dYs = −κ(s)YsdWs. Thus,
X̄T = U′(−1)(λYT).
MV example: Because g(PX) = E[X]− γ

2E[X
2] + γ

2 (E[X])
2, we

have ∂x∇g(PX, x) = 1− γx+ γE[X], and

ξt = 1− γX̄T + γEt[X̄T], Zξ
t,S(s) = −γZX̄T,S(s).

Thus, FOC turns into a simple form ZX̄T,S(t) = κ(t)
γ . This

reproduces results in Basak and Chabakauri 2010.
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New examples: betweenness preferences

Let us consider a g determined by

E
[
F
(

X
g(PX)

)]
= 0,

where F : (0,∞) → R is smooth, increasing, concave, and F(1) = 0.
g(PX) is in the scale of certainty equivalent of X, because
g(δx) = x;
g has the positive homogeneity: g(PλX) = λg(PX) for λ > 0;
Taking F = Uγ , the CRRA utility function, we obtain the
(certainty equivalent of) EU preference: g(PX) = U−1

γ (EUγ(X)).
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New examples: betweenness preferences

Proposition
g satisfies the standing assumptions, and

∇g(µ, x) = F
(

x
g(µ)

)
g(µ)2∫∞

0 yF′
(

y
g(µ)

)
µ(dy)

.

Idea (assume deterministic θ and σ for explicit solutions):
Make an ansatz of the form of π̄ (hence X̄T):
π̄t = (σ†(t))−1at, t ∈ [0, T], where a is unknown and
deterministic.
Express g(Pt

X̄T
) in terms of a with a (implicit but known)

function H.
Use the FOC to obtain an equation (ODE in our case) of a and
solve it.
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New examples: betweenness preferences

Use the form of derivative:

X̄Tξ
t =

X̄TF′
(
X̄T/g(Pt

X̄T
)
)
g(Pt

X̄T
)

Et

[
X̄TF′

(
X̄T/g(Pt

X̄T
)
)] .

Use the FOC:

at = κ(t) +
ZX̄TF

′
(
X̄T/g(Pt

X̄T
)
)
(t)

Et

[
X̄TF′

(
X̄T/g(Pt

X̄T
)
)] .
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New examples: betweenness preferences

Denote A(t) =
∫ T
t |as|2ds. Because

X̄T = X̄te
∫ T
t a†s κ(s)ds− 1

2
A(t)R(t, T),

where R(t, T) ∼ e
√

A(t)ξ and ξ is standard normal. Suppose we can
solve from the definition of g a function H such that H(y) = g(Pe

√yξ),
then from positive homogeneity we have

g(Pt
X̄T) = X̄te

∫ T
t a†s κ(s)ds− 1

2
A(t)H(A(t)).

=⇒Et

[
X̄TF′

(
X̄T/g(Pt

X̄T)
)]

= X̄te
∫ T
t a†r κ(r)dr− 1

2
A(t)E

[
e
√

A(t)ξF′
(
e
√

A(t)ξ/H(A(t))
)]

.
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New examples: betweenness preferences

Use Itô’s formula to compute Z:

ZX̄TF
′
(
X̄T/g(Pt

X̄T
)
)
(t)

=X̄te
∫ T
t a†r κ(r)dr− 1

2
A(t)E

[
e
√

A(t)ξ

(
F′

(
e
√

A(t)ξ

H(A(t))

)

+
e2
√

A(t)ξ

H(A(t))
F′′

(
e
√

A(t)ξ

H(A(t))

))]
at.

FOC =⇒
at = κ(t)G(A(t)) , t ∈ [0, T],

with

G(y) :=
H(y) · E

[
e
√yξF′(e√yξ/H(y)

)]
−E

[
e2

√yξF′′
(
e
√yξ/H(y)

)] , y ≥ 0.
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New examples: betweenness preferences

We transform the equation of a to an ODE:{
A′(t) = −|κ(t)|2G(A(t))2, t ∈ [0, T),
A(T) = 0.

An autonomous ODE (after appropriate time change) with explicit
solution:

A(t) = G−1

(∫ T

t
|κ(s)|2ds

)
.

Here, G(x) :=
∫ x
0

1
G(y)2 dy, x ∈ [0,∞] and we assume that

G(∞) >
∫ T
0 |κ(s)|2ds.
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Conclusion of the first example

Proposition
If θ, σ are deterministic and g is the CRRA betweenness preference,
then an equilibrium portfolio is given by

π̄t = (σ†(t))−1κ(t)G
(
G−1

(∫ T

t
|κ(s)|2ds

))
, t ∈ [0, T),

provided that G(∞) >
∫ T
0 |κ(s)|2ds.

If F = Uγ for γ > 0, G(y) ≡ 1/γ =⇒ π̄ is the Merton’s solution;
If F =

∫∞
0 UγF(dγ) (mixed CRRA utility) for some compactly

supported distribution F, we can prove that G(∞) = ∞.
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New examples: weighted utility

We consider a g, in which the distribution of terminal endowment X is
weighted via a decreasing function of the realization of X:

g(PX) =
E[X1−ρ · Xγ ]

(1− ρ)E[Xγ ]
.

To make g monotone and concave, we require −1 < γ ≤ 0,
γ ≤ ρ < γ + 1.
Decreasing weight function: put more weights on bad scenarios.
Extensions to other types of weight functions are possible.
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New examples: weighted utility

Proposition
Let g be given by weighted utility. Then standing assumptions are
satisfied. Moreover,

∇g(µ, x) =
1

1− ρ
·
x1−ρ+γ

∫∞
0 xγµ(dx)− xγ

∫∞
0 x1−ρ+γµ(dx)(∫∞

0 xγµ(dx)
)2 .

Next question: how to transform FOC to something we can solve?
Both powers of terminal endowments should be important:

Yi(s) := Es[X̄ri
T ], Zi(s) := ZYi(T)(s),

with r1 = γ, r2 = 1− ρ+ γ.



Motivations Derivatives Verifications Examples References

New examples: weighted utility

Use the form of derivative:

X̄Tξ
t = X̄T∂x∇g(Pt

X̄T , X̄T) =
r2X̄r2

T Et[X̄r1 ]− r1X̄r1
T Et[X̄r2

T ]

(1− ρ)(Et[X̄r1
T ])

2
,

=⇒ Es[X̄Tξ
t] =

λ2Y2(s)Y1(t) + λ1Y1(s)Y2(t)
Y1(t)2

,

=⇒ Et[X̄Tξ
t] =

Y2(t)
Y1(t)

and ZX̄Tξ
t
(t) =

λ2Z2(t)Y1(t) + λ1Z1(t)Y2(t)
Y1(t)2

.

Use FOC:
σ(t)π̄t = κ(t) + λ2Ẑ2(t) + λ1Ẑ1(t),

in which

Ẑi(s) = Zi(s)/Yi(s), λ1 =
−γ

1− ρ
, λ2 =

1− ρ+ γ

1− ρ
.
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New examples: weighted utility

How to determine Ẑ1 and Ẑ2? Consider X̂ = logX, Ŷi = logYi, we
have the following FBSDE:dŶi(s) = −1

2
(Ẑi(s))2ds+ Ẑi(s)dWs, i = 1, 2,

Ŷ1(T) = r1X̂T, Ŷ2(T) = r2X̂T,dX̂s = (π̄sθ(s)−
1

2
σ(s)2π̄2

s )ds+ σ(s)π̄(s)dWs,

X̂0 = log x0.

We can now plug FOC into the forward equation, and get a BSDE
(without a forward one) with respect to Ȳi = Ŷi − riX̂, and solve Ẑ1,
Ẑ2 from this (quadratic) BSDE.
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New examples: weighted utility

Proposition

Let g be given by weighted utility. Then a Type-II equilibrium is given
by

σ(t)π̄t =
1

ρ− 2γ
κ(t) +

1

ρ− 2γ
[λ1Z̄1(t) + λ2Z̄2(t)],

in which Z̄1 and Z̄2 is a solution of
dȲi(s) =− 1

2

[
Z̄(s)†CiZ̄(s) + ci,iZ̄i(s)κ(s)

+c−i,iZ̄−iκ(s) + bi|κ(s)|2
]

ds
+ Z̄i(s)dWs, i = 1, 2,

Ȳ1(T) =Ȳ2(T) = 0,
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New examples: weighted utility

Well-posedness of the QBSDE?
The system of QBSDE is more difficult than the
one-dimensional equation.
Our system of QBSDE is fully quadratic in the sense that in each
equation, both components of Z are in quadratic orders. Existing
results are not directly applicable.
To ensure the existence and/or uniqueness, we need to impose
certain smallness condition to validate contraction arguments. To
this end, Θ :=

∫ T
0 |κ(s)|2ds and V(Θ) := supτ ∥Θ− Eτ [Θ]∥∞,

we suppose V(Θ) is small: the market price of risk is not ”so
random”.

Lemma
For any sufficiently small ϱ > 0, there exists V0 > 0 such that if
V(Θ) < V0, then the QBSDE admits a unique solution
(Ȳ, Z̄) ∈ (L∞(F,R))2 × (Hd

BMO)
2 with ∥Z̄∥BMO < ϱ.
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Thank you!
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