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Mean-variance portfolio selection

e Static problem:

sup {E[WTR] - ZVar(WTR)}.
weA 2

- A simple quadratic optimization problem (with constraints),
given E[R] and Var(R).

- Numerical solvers are super efficient.
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Mean-variance portfolio selection

e Dynamic problem:

sup E[(0 - S)7] — %Var[(é‘ -S)7]
YeO

- (0-S)r =05 0} (St — S));

- Given full information of {S;}/_, (including marginals,
transitions), it can be solved with DPP (backward induction);

- With constraints, explicit solutions are usually unavailable, and
numerical methods have high computation burdens...
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Model-based v.s. Model-free

e Explicit solutions are model-based: it is optimal only with this
specific model/structure; to implement the optimal strategy,
one needs to know the information (e.g. parameters) of the
model;

e Numerical solutions are semi-model-based: sometimes no
need to assume specific model, or the model assumptions can
be fairly general, but numerical solver needs samplers/oracles;

e Financial problems should be model-free: we don't know the
data distribution, neither can we sample from it (adequately).
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Generating data via diffusion model

Diffusion model is a type of generative model: after appropriate

training, it can output samples with similar distributional properties
as data.

Building blocks:
e Aforward diffusion process:

dXT = _% /B(T)XT dr + AV B(T) dB”M
Xo ~ Pdata-

- p(r,-): the density of X,;
- As 7 — oo, the invariant measure is N(0, /) (pure noise).

- We can not sample from py.t., but we can sample from A/(0O, /)!
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Generating data via diffusion model

How about starting from the noise and run the SDE backwardly,
intuitively it gives us Pgata!
e Areversed diffusion process:

dy, = <%ﬂ(7’— T)Y:

+8(T — 7)Vlegp(T — 7, YT)>C17' + /B(T — 7)dB;,
YO ~ N(O,/),

- Theory (FP equation): Yr_. and X, have the same marginal
distribution for any 7.

- We do not know V,p(+, ) (the score function), but
score-matching techniques gives an approximator sy.

- Theoretical error bounds: if sy and the score function are close,
the distribution of Y, is close to pgat (in Wh, TV...).
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Diffusion model for time-series data

Challenges:
e X=(X",X2,--- ,XT) ~ P: data in the shape of time-series;

e We can still employ usual diffusion model, but this ignores the
temporal structure (error only in W5);

e Dynamic problems are not stable in W, but stable in AW;;
e We can not sample from P,..: the conditional distribution.
Our results:

A conditional version of diffusion model, from which we sample
adaptively, with AW,-bounds.
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Diffusion model for time-series data

Forte {1,2,---,T -1}, x"t € R consider the following forward
processes:
{ dXtH! = —Xt+H1dr + /2dBEH,
Xt+1 ~
0

Now the score function has three variables:

x1it

St+1 (T7 X1:t7x) = vXpt+1 (T7X|X1:t)'

Assumption: score-matching errors are small
Foranyr e (0,7]andt=1,2,---,T — 1, we have

]EXNp1 (T,')’s;(T’X) — Vxlog p1 (TaX)|2 Ssgcore’

2

Exht,\,P]:t]E

t+1 Tt yt+1 t+1y1:t
X7t.+1~pr+1(7-,~|X1:r) Sy (T’X 7XT+ )_VX Iogpl’—l-'l (7_7X7-+ |X )

2
< Escore*

v
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Diffusion model for time-series data

The score-matching error gives the training objective, but it is not
directly feasible:

2

EX1:t~P1:t]E

t+1 Tt yt+1 t+1y1:t
X$+1Npt+1(7—1'|x1:t) Sa+ (T,X ,X7.+ )_VX |ngt+1 (T7XT |X )

2
S5sc01re'

e We can not sample from peq (7, -|X?);
e We do not know how to evaluate score function.
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Diffusion model for time-series data

Denoising score-matching is feasible and equivalent:

Lemma

Foranyt=1,2,---,T — 1, ordinary score-matching is equivalent to
the following:

2 igiall 1:it yt+1 t+1 | yt+1
m6|n EX'I:t+1 N]P'I:H»'I EX5—+1 N¢(T,-|XH’1) 59 (T,X ’XT )_VX |Og ¢(T, XT ‘X )

Here, ¢(T, -|xo) is the probability density function of the forward
process, with initial condition Xy = Xq. In particular,

\x—xoe*”\z

$(,x|x0) = (2m(1 — €727)) "V 2e A7)
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Diffusion model for time-series data

Assumption: the data distribution is reasonable

@ There exists a constant L > 0 such thatforanyte {1,2,---,T},
7€ [0,7]and x'1,y1t ¢ RY,

|Vxlogp1(7,X) — Vxlogpi(7,y)| < Lix —yl,
|Vx log pes1 (7, XX ")) =V log pea (7, y Iy )| < L(IX™ =y + |x—y]).

® For some ¢ > 0, Ep,e¥1l < o0, and for t = {1,2,--- , T — 1},

C|Xt+1|
1_stup E[pxme < 00.
x1teRat
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Diffusion model for time-series data

Assumption: approximating network is good

@ There exists a constant L > 0 such thatforanyt e {1,2,---,T},
7€ [0,7]and x'1, y1t ¢ RY,

S;(T’X) _S;(T’y) < L’X _}/|,
SE—H (7_>X1:tvx) - SE—H (TJ/HJ’) < L(’X1:t _y1:t‘ + ‘X _y’)
® There exists constants C, Ry, d > 0 such that for any for any
0O, te{1,2,---,T}, 7€[0,7], x"t € R%and x € R? with
x| > Ro,
2x - s)(m,x) < —(1 + 8)|x|* + C,
2x - S5 (7, X1 x) < —(1 + 8)|x|? + C.
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Diffusion model for time-series data:; how to
sample?

We propose an adaptive sampling scheme:

Algorithm

@ Starting from pure noise z ~ NV(0,/), run the reversed diffusion
process with approximated score function s}(r, -) to get
samples of y';

® Forte1,2,---,T—1,foreach generated sample y', use
approximated score function st+'(7,y', .) and run the
reversed diffusion process once to get a sample of y'*';

© Get the samples of whole path y'.

The output joint measure is denoted by Q.
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Diffusion model for time-series data: main result

If score-matching errors are small, the data distribution is
reasonable, and the approximating network is good, then:

An3(e,0) < C(THUE " + 75 (7).

where

o(T)=T? T +e .
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Diffusion model for time-series data: remarks

e Note that W, < AW, this also gives a bound for classical
Wasserstein metric (ignoring the temporal structure), keeping
the same accumulation rate of score-matching error
polynomial in T;

e We have a new set of assumptions: drop the log-concavity of
data distribution, add a dissipative condition to networks;

e Good thing: we can construct a sy satisfying the dissipative
condition, while score-matching errors are small.
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Diffusion model for time-series data: proof sketch

Step 1: A conditional distribution bound:

W3 (B, Q) < C(a(T) TR 2 L 520y :t|>'

@ Bound Wassertein by total variation:
W3 (P, Qi) <C <R2TV(IP’X1;r, Qi) + Ep X [Pl gert 5py)

+Equ [V Pl vt 2ry] ) :

@® TV term is bounded by classical approach (Girsanov’s theorem);

© Ep ,, [[X|%(xi155;] is bounded because data distribution is
reasonable;

@ Eq, [|Y*"?Iye1 2] is bounded by analyzing reversed SDE
with dissipative conditions.
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Diffusion model for time-series data: proof sketch

Step 2: Constructing approximated coupling for each conditional
distribution: m. € M(Py1.c, Q1) is such that

Ene W=V < (TRl + 777 (a(T) +)/27).

Step 3: Conclude by taking e — 0.
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Model stability

We can now sample from a surrogate model Q and it is close to P,

will the optimal value of problem under Q near the optimal value
under P?

Theorem

Denote by v(P) and v(Q) the optimal values of the mean-variance
problem under P and Q, respectively. Then, under appropriate
technical conditions, |[v(P) — v(Q)| < CAW, (P, Q).
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Model stability
Establishing the AW,-stability requires dynamic programming

principle!

V() = sup {Ep[w -S)] - %Varp[(ﬁ : S)T]}

v(P) is known to be time-inconsistent. We rely on its duality to
quadratic hedging:

V(P,c) = mﬂinEpUC — (- S)r)?].

y 1 > 1 }
V(P) = su —=V|{P,—+a)|+=—+a0a;.
( ) GERp+{ 2 < Y 27
Idea: Prove the DPP and AW;-stability first for V, then prove the
optimal multiplier a is uniform in Q as long as AW, (PP, Q) is small.

Fengyi Yuan (Umich) Diffusion model and portfolio selection May 22nd, 2025 20/24



Conclusions

Our results:

e An adaptive (training and) sampling scheme that facilitates
conditional sampling, with AW, error bounds;

e A model stability result that allows us to work under surrogate;

e (Not presented) A policy gradient algorithm that solves the
mean-variance problem relying on surrogate model Q;

e (Not presented) Numerical experiments confirm that the
proposed algorithms have satisfactory performance on both
synthetic and empirical data.
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Workflow: theories

MV problem Financial Data
und/er P ) Model-based approach L from P _
Model Stability Teel (Qr_n_n_iscient solution)- -~ Quantlﬁca.mo/r‘ll ;e\l;ror bounds
-------- in
(Corollary 3.9) (Section 22)
MYV problem Pretrained model
under Q Q
) T daptive sampling
Duality (3.3) (Section 2)
Poli dient
Quadratic hedging © lf v g'ri en
der Q — algorithm
un (Algorithm 4)
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Future directions

e Relax assumptions on data distribution: with better
approximation results, we expect merely Lipschitz continuity of
score function will give similar bounds.

e Sample complexity, discretize error, low-dimension structure...
e Improve the algorithm, large-scale experiments.
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