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Mean-variance portfolio selection

• Static problem:

sup
w∈A

󰀝
E[w†R]− γ

2
Var(w†R)

󰀞
.

- A simple quadratic optimization problem (with constraints),
given E[R] and Var(R).

- Numerical solvers are super efficient.
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Mean-variance portfolio selection

• Dynamic problem:

sup
ϑ∈Θ

E[(ϑ · S)T ]−
γ

2
Var[(ϑ · S)T ]

- (ϑ · S)T =
󰁓T−1

l=1 ϑ†
l (Sl+1 − Sl);

- Given full information of {Sl}Tl=1 (including marginals,
transitions), it can be solved with DPP (backward induction);

- With constraints, explicit solutions are usually unavailable, and
numerical methods have high computation burdens...
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Model-based v.s. Model-free

• Explicit solutions are model-based: it is optimal only with this
specific model/structure; to implement the optimal strategy,
one needs to know the information (e.g. parameters) of the
model;

• Numerical solutions are semi-model-based: sometimes no
need to assume specific model, or the model assumptions can
be fairly general, but numerical solver needs samplers/oracles;

• Financial problems should be model-free: we don’t know the
data distribution, neither can we sample from it (adequately).
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Generating data via diffusion model

Diffusion model is a type of generative model: after appropriate
training, it can output samples with similar distributional properties
as data.

Building blocks:
• A forward diffusion process:

󰀫
dXτ = −1

2 β(τ) Xτ dτ +
󰁳

β(τ)dBτ ,
X0 ∼ pdata.

- p(τ, ·): the density of Xτ ;

- As τ → ∞, the invariant measure is N (0, I) (pure noise).

- We can not sample from pdata, but we can sample from N (0, I)!
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Generating data via diffusion model
How about starting from the noise and run the SDE backwardly,
intuitively it gives us pdata!

• A reversed diffusion process:
󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

dYτ =

󰀕
1
2β(T − τ)Yτ

+β(T − τ)∇ log p(T − τ, Yτ )
󰀖

dτ +
󰁳

β(T − τ)dB̄τ ,

Y0 ∼ N (0, I),

- Theory (FP equation): YT −τ and Xτ have the same marginal
distribution for any τ .

- We do not know ∇xp(·, ·) (the score function), but
score-matching techniques gives an approximator sθ.

- Theoretical error bounds: if sθ and the score function are close,
the distribution of Yτ is close to pdata (inW2, TV...).
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Diffusion model for time-series data

Challenges:
• X = (X1, X2, · · · , XT) ∼ P: data in the shape of time-series;

• We can still employ usual diffusion model, but this ignores the
temporal structure (error only inW2);

• Dynamic problems are not stable inW2, but stable in AW2;

• We can not sample from Px1:t : the conditional distribution.

Our results:
A conditional version of diffusion model, from which we sample
adaptively, with AW2-bounds.
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Diffusion model for time-series data
For t ∈ {1,2, · · · , T − 1}, x1:t ∈ Rdt consider the following forward
processes: 󰀫

dX t+1τ = −X t+1τ dτ +
√
2dBt+1τ ,

X t+10 ∼ Px1:t .

Now the score function has three variables:

st+1(τ, x1:t, x) := ∇xpt+1(τ, x|x1:t).

Assumption: score-matching errors are small
For any τ ∈ (0, T ] and t = 1,2, · · · , T − 1, we have

EX∼p1(τ,·)|s
1
θ(τ, X)−∇x log p1(τ, X)|2 ≤ε2score,

EX1:t∼P1:tEX t+1τ ∼pt+1(τ,·|X1:t)

󰀏󰀏󰀏󰀏s
t+1
θ (τ, X1:t, X t+1τ )−∇x log pt+1(τ, X t+1τ |X1:t)

󰀏󰀏󰀏󰀏
2

≤ε2score.
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Diffusion model for time-series data

The score-matching error gives the training objective, but it is not
directly feasible:

EX1:t∼P1:tEX t+1τ ∼pt+1(τ,·|X1:t)

󰀏󰀏󰀏󰀏s
t+1
θ (τ, X1:t, X t+1τ )−∇x log pt+1(τ, X t+1τ |X1:t)

󰀏󰀏󰀏󰀏
2

≤ε2score.

• We can not sample from pt+1(τ, ·|X1:t);
• We do not know how to evaluate score function.
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Diffusion model for time-series data

Denoising score-matching is feasible and equivalent:

Lemma
For any t = 1,2, · · · , T − 1, ordinary score-matching is equivalent to
the following:

min
θ

EX1:t+1∼P1:t+1EX t+1τ ∼φ(τ,·|X t+1)

󰀏󰀏󰀏󰀏s
t+1
θ (τ, X1:t, X t+1τ )−∇x log φ(τ, X t+1τ |X t+1)

󰀏󰀏󰀏󰀏
2
.

Here, φ(τ, ·|x0) is the probability density function of the forward
process, with initial condition X0 = x0. In particular,

φ(τ, x|x0) = (2π(1− e−2τ ))−d/2e
− |x−x0e

−τ |2

2(1−e−2τ ) .
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Diffusion model for time-series data

Assumption: the data distribution is reasonable
1 There exists a constant L > 0 such that for any t ∈ {1,2, · · · , T},

τ ∈ [0, T ] and x1:t, y1:t ∈ Rdt,

|∇x log p1(τ, x)−∇x log p1(τ, y)| ≤ L|x − y|,
|∇x log pt+1(τ, x|x1:t)−∇x log pt+1(τ, y|y1:t)| ≤ L(|x1:t−y1:t|+ |x−y|).

2 For some c > 0, EP1e
c|X1| < ∞, and for t = {1,2, · · · , T − 1},

sup
x1:t∈Rdt

EPx1:t e
c|X t+1| < ∞.
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Diffusion model for time-series data

Assumption: approximating network is good
1 There exists a constant L > 0 such that for any t ∈ {1,2, · · · , T},

τ ∈ [0, T ] and x1:t, y1:t ∈ Rdt,

s1θ(τ, x)− s1θ(τ, y) ≤ L|x − y|,
st+1θ (τ, x1:t, x)− st+1θ (τ, y1:t, y) ≤ L(|x1:t − y1:t|+ |x − y|).

2 There exists constants C,R0, δ > 0 such that for any for any
θ ∈ Θ, t ∈ {1,2, · · · , T}, τ ∈ [0, T ], x1:t ∈ Rdt and x ∈ Rd with
|x| > R0,

2x · s1θ(τ, x) ≤ −(1+ δ)|x|2 + C,

2x · st+1θ (τ, x1:t, x) ≤ −(1+ δ)|x|2 + C.
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Diffusion model for time-series data: how to
sample?

We propose an adaptive sampling scheme:

Algorithm
1 Starting from pure noise z ∼ N (0, I), run the reversed diffusion
process with approximated score function s1θ(τ, ·) to get
samples of y1;

2 For t ∈ 1,2, · · · , T − 1, for each generated sample y1:t, use
approximated score function st+1(τ, y1:t, ·) and run the
reversed diffusion process once to get a sample of yt+1;

3 Get the samples of whole path y1:T .

The output joint measure is denoted by Q.
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Diffusion model for time-series data: main result

Theorem
If score-matching errors are small, the data distribution is
reasonable, and the approximating network is good, then:

AW2
2 (P,Q) ≤ C

󰀓
T

5T
2 ε

1/2T−1

score + T
5(T−1)

2 α(T )1/2
T−1

󰀔
,

where
α(T ) = T 2e−T + e−cT .
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Diffusion model for time-series data: remarks

• Note thatW2 ≤ AW2, this also gives a bound for classical
Wasserstein metric (ignoring the temporal structure), keeping
the same accumulation rate of score-matching error
polynomial in T ;

• We have a new set of assumptions: drop the log-concavity of
data distribution, add a dissipative condition to networks;

• Good thing: we can construct a sθ satisfying the dissipative
condition, while score-matching errors are small.
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Diffusion model for time-series data: proof sketch
Step 1: A conditional distribution bound:

W2
2
󰀃
Px1:t ,QT

y1:t
󰀄
≤ C

󰀓
α(T ) + T 2E(x1:t)1/2 + T 5/2|x1:t − y1:t|

󰀔
.

1 Bound Wassertein by total variation:

W2
2 (Px1:t ,Qy1:t) ≤C

󰀕
R2TV(Px1:t ,Qy1:t) + EPx1:t

󰀅
|X t+1|2I{|X t+1|≥R}

󰀆

+ EQy1:t

󰀅
|Y t+1|2I{|Y t+1|≥R}

󰀆󰀖
.

2 TV term is bounded by classical approach (Girsanov’s theorem);
3 EPx1:t

󰀅
|X t+1|2I{|X t+1|≥R}

󰀆
is bounded because data distribution is

reasonable;
4 EQy1:t

󰀅
|Y t+1|2I{|Y t+1|≥R}

󰀆
is bounded by analyzing reversed SDE

with dissipative conditions.
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Diffusion model for time-series data: proof sketch

Step 2: Constructing approximated coupling for each conditional
distribution: πε ∈ Π(Px1:t ,Qy1:t) is such that

Eπε
1:t
|X1:t − Y1:t|2 ≤ C

󰀓
T

5t
2 ε

1/2t−1

score + T
5(t−1)

2 (α(T ) + ε)1/2
t−1

󰀔
.

Step 3: Conclude by taking ε → 0.
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Model stability

We can now sample from a surrogate model Q and it is close to P,
will the optimal value of problem under Q near the optimal value
under P?

Theorem
Denote by v(P) and v(Q) the optimal values of the mean-variance
problem under P and Q, respectively. Then, under appropriate
technical conditions, |v(P)− v(Q)| ≤ CAW2(P,Q).
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Model stability

Establishing the AW2-stability requires dynamic programming
principle!

v(P) = sup
ϑ

󰀝
EP[(ϑ · S)T ]−

γ

2
VarP[(ϑ · S)T ]

󰀞

v(P) is known to be time-inconsistent. We rely on its duality to
quadratic hedging:

V(P, c) = min
ϑ

EP
󰀅
|c− (ϑ · S)T |2

󰀆
.

v(P) = sup
a∈R+

󰀝
− γ

2
V
󰀕
P,
1
γ
+ a

󰀖
+

1
2γ

+ a
󰀞
.

Idea: Prove the DPP and AW2-stability first for V , then prove the
optimal multiplier a is uniform in Q as long as AW2(P,Q) is small.
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Conclusions

Our results:
• An adaptive (training and) sampling scheme that facilitates
conditional sampling, with AW2 error bounds;

• A model stability result that allows us to work under surrogate;
• (Not presented) A policy gradient algorithm that solves the
mean-variance problem relying on surrogate model Q;

• (Not presented) Numerical experiments confirm that the
proposed algorithms have satisfactory performance on both
synthetic and empirical data.
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Workflow: theories
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Future directions

• Relax assumptions on data distribution: with better
approximation results, we expect merely Lipschitz continuity of
score function will give similar bounds.

• Sample complexity, discretize error, low-dimension structure...
• Improve the algorithm, large-scale experiments.
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Thank you!
Personal Webpage: https://fy-yuan.github.io

Paper on arXiv: 2507.09916.
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