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Discrete time version: Markov decision process

State transitions controlled by action a: X;1 ~ P(-t, Xt = x, a).
Collect rewards based on states and actions: Ry = r(t, Xz, a).

Aim to find a good policy: ¢ : X — A, i.e., at time t, observe
state x, then take action a = ¢(x).

(Discounted) total reward (value function with policy ¢):

Jo(x) =D SESr(t, X, (X)),

t=0

Problem:
m(;qus(x)
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Discrete time version: Markov decision process

The tool to find the optimal ¢:

Dynamic programming principle

With Q™ (x, a) := J®17(x), we have

Q%(x,a) = r(x, a) + SE“?Q?(X1, $(X1)).

With V(x) = sup,, Q?(x, ¢(x)) = sup,J?(X), we have

V(x) = sup{r(x,a) + JEV(X7)}.

Solve V, then determine ¢*:

»*(x) = arggnax{r(x, a) + SEXV(X7)}
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Continuous time version: Stochastic control theory

We also have similar approaches (DPP) for continuous-time
problems... But with some specifications and more advanced tools

e State dynamics:
aXe = b(t,Xt, at)dt + O’(t,Xt, O[t)th.

e Objectives (costs or rewards):
T
J(t, x; a) = X [/o e "0f (s, Xs, as)ds + e T Dg(Xp)].

e Problems:

ol = argmax{J(t, x; @)}

Idea: As P~ is described by SDE, use tools from stochastic analysis
to establish characterizations of critical points!
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Stochastic control: Analytical approach

Consider the following value function:

V(t,x) .= sup J(t,x;a) =J(t,x; an’X))
OéEZ/{t,x

Dynamic Programming principle (continuous time)

Foranyt >t

t/
V(t,x) = sup EW[ / e‘r(s_t)f(s,Xs,as)dSJrV(t’,Xﬂ)]
t

OéEZ/{t,X

Interpretation:
The optimal control & for the subproblem on [t, T] remains to be
optimal for the subproblem on [t', T].
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Stochastic control: Analytical approach

Hamilton-Jacobi-Bellman (H)B) equation

The value function V satisfies

OtV +rV + sup {b(-,a)axV I %U(‘a a)zaxxv +f(‘a O‘)} =0.

e Assuming sufficient regularity, the proof is straightforward
(classical solution).

e Under mild conditions, value function is always a viscosity
solution — existence.

e Uniqueness is challenging and usually relies on comparison
principle.

e Extensions: path-dependency (non-Markovian), mean-field
equation 9, V(t,x, u)...
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Stochastic control: Probabilistic approach

Stochastic maximum principle

Suppose f and g are concave in x and a. Suppose we have optimal

control and trajectory (&, X). Consider the Hamiltonian
H(t,x,a,p,q) = pb(t,x,a) + qo(t, X, ) + f(t, X, «). Consider the
following adjoint equation:

dp(t) = — (bx(t, X(t), a(t))p(t) + ox (¢, X(t), &(t))q(t)
), a(t)) ) dt + q(e)aw(2),
p(T) = &(X(T)).

Then,
&(t) = argmax H(t, X(t), o, p(t), q(t)).

«
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Stochastic control: Probabilistic approach

The equation of p (the first-order adjoint equation) is a
Backward Stochastic Differential Equation (BSDE). The solution
is a pair (p,q)!

Fixing X and @&, p satisfies a linear BSDE. However, & depends
on p, g, hence we essentially have a nonlinear BSDE (even
quadratic growth in portfolio selection case).

e In some cases: X and & explicitly expressed by p and g. Then,
showing the well-posedness of BSDE (sometimes F-BSDE) gives
the characterization of optimal control.

Techniques: proper choices of solution space + fixed point
theorems.
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Portfolio Selection

Returns of assets: R a random variable valued in R?; a model P*.
Choose 7 € RY to get the best outcome = - R.

Extensions:

e Discrete time dynamic problems: R1,R,, - -+ , Ry take values in
RY, and P* is a probability measure on (R?)’.

e Continuous time dynamic problems: The asset prices {S¢}o<t<r
follow different types of SDE under P*.

The first question to ask: the criterion of optimization with
uncertainty — preferences on spaces of r.v. (or distributions)!
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Preferences

Suppose X is the outcome r.v..

Key idea: map X to some numbers.
e Expectations:
e E[X]: risk neutral.
® E[U(X)]: risk averse.
e + Expectation - risk:
® E[X] — 3 Var[X]: mean-variance (related to LQ control).

Axiomatization of EU

Subject to some technical conditions, a preference over
distributions satisfies the following independence axiom iff it is
expected utility:

pr = p2 = ppr + (1= pluz = puz + (1 — p)us
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Do people make decisions by EU?

An old but famous experiment in behavioral sciences:

Experiment 1 Experiment 2
Gamble 1A Gamble 1B Gamble 2A Gamble 2B
Winnings | Chance | Winnings | Chance | Winnings | Chance | Winnings | Chance
$1 million | 100% $1 million | 89% Nothing 89% Nothing 90%
Nothing 1% $1 million | 11%
$5 million | 10% $5 million | 10%

Figure: Allais paradox (taken from Wikipedia).

e Experiments show 1A>1B and 2B:-2A exist simultaneously.

e 1B=0.89*1A + 0.11*C, C = nothing w.p. 1/11 and 5m w.p.
10/11;1A>-1B = 1A>-C;

e 2A = 0.89*(winning nothing) + 0.11*1A, 2B = 0.89*(winning
nothing) + 0.11*C; 1A>-C = 2A>2B.
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Nonlinear preferences

Whatever the utility function is, the independence axiom issues
remain because E[U(X)] = (U, £L(X)) is a linear function.

In [Liang, Xia, and Yuan, 2023] we study the stochastic maximum
principle for continuous time dynamic portfolio selection problems,
with nonlinear preferences.

Examples include:

e Betweenness preference, defined implicitly:
E[F(X — 8(£(X))] = 0, E[F(X/g(L(X))] = O.
e Weighted utility: E[UX)A(X)]/E[X(X)].

e Mean-variance, or any nonlinear functions outside of
moments, F(E[X],E[X?],---).
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Optimization?

e Always evaluate the preference value at the conditional
distributions.

e DPP «+— iterated law of conditional expectations <— linearity.

L)
<
¢<"< S
7 /> [0 sseq
\ < £—T+2
4 $__~[—
fz0 41 4:2 R T o

e Without DPP, what solutions shall we expect?
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Strotz-Pollack equilibirum

General idea: keep doing backward induction anyway; a choice that
one has no reason to abandon.

Definition
Suppose under a given strategy or policy «, the pay-off at time t is
given by J(t; 7) (need to condition on F;). Then 7* is said to an
equilibrium if:
e (Discrete time version) J(t; 7* &1 a) < J(t; #*) for any t and action
a.
¢ (Continuous time version) lim supﬁow <0.

See the paper [Liang, Xia, and Yuan, 2023] for detailed definitions
of different type of equilibria.
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Problem formulation

e We have a model for stock price:
dsi = Si[e'(t)dt + o'(t) - AW,
Sh=sp >0,
Here 6 and o can be general stochastic processes subject to
technical conditions. We do need they are adapted to

Brownian filtrations, but with possibly more Brownian motions
than W< (incomplete market).

e Wealth dynamic under a (proportional) portfolio 7:

dXF = XFmef(t)dt + XF o (t) - AW,
Xg = Xo.
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Problem formulation

e The preference is characterized by a function g : P(R) — R.

e For each t the agent “optimizes” the value of conditional
distribution: J(t; 7) = g(L(XF|F)).
e The first order condition relies on the notion of derivatives with

respect to probability measures: Vg : P(R) x R — R is such
that

S gsv+ (1~ S)) = (Va(sw + (1~ ). )ov — i)Yo

e |n terms of random variables, and use the fundamental
theorem of calculus,

1
8(L(Y)) — 8(L(X)) :/o E[VE(sL(Y) + (1 —s)L(X),Y)
— Vg(sL(Y) + (1 = s)L(X), X)]ds.
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Main result

Equilibrium condition
Suppose & = 8XVg(IP’§-(T,)_(T). Under certain technical assumptions
on 6, o, 7, &, Es[Xr€, 78S Mo and My, if we have

(5(8) — 0T (O)F)EeXre] + 276 S(t) = 0|, te[0,T],

then 7 is a Type-I or Type-ll equilibrium, depending on the technical
assumptions we impose.

Remark: This is the first-order condition from the stochastic
maximum principle, with pf(s) = X; "Es[Xr¢l], g5 (s) = ZX7€°5(s),
q"9(s) = Z79(s) — o(s)7(s)sp'(5).
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Proof idea

Under some convexity conditions:
8(Pls.) — 8% ) < Ee [(0°7 — X)] = Eelp (D)X — Xp)]

Using It and the BSDE of p and g (adjoint equations!):

t+e
Ee[p"(T)(X™7 =Xl < - /t ) (X572 = Xs)(p'(5)8(5) + o (5)g"(s))ds

+ 0(¢)
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Specific examples

e EU example: Suppose we are in the dollar amount case, the
market is complete and U is smooth (say, exponential utility).
Then ¢ = U'(Xr), and
FOCe 2V — i (O)E[U' (X7)] < Es[U'(X7)] = AYs, with ¥ the
(_unique) pricing kernel: dYs = —k(S)YsdWs. Thus,

Xr = UCEDOY).

e MV example: Because g(Px) = E[X] — JE[X?] + J(E[X])?

have 0xVg(Px,x) = 1 — yx + 7yE[X], and

€ =1 =Xy +EeXr], Z85(s) = —VZ)_(T’S(S)-

Thus, FOC turns into a simple form Z)_(Tvs(t) = # This
reproduces results in [Basak and Chabakauri, 2010].
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Specific examples

Weighted CRRA utility:

E[X'—7 - X"]
Py) = ————— .
00 = ]
e To make g monotone and concave, we require —1 < v <0,
y<p<~y+1l
e Decreasing weight function: put more weights on bad
scenarios.

e Extensions to other types of weight functions are possible.
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Weighted utility

Derivatives of weighted utility

Let g be given by weighted utility. Then standing assumptions are
satisfied. Moreover,

1 ‘ x1—ptv fooo X7 p(dx) — x7 fooo x17P7 pu(dx)
7 (Jo™xn(ax)’ |

Next question: how to transform FOC to something we can solve?
Both powers of terminal endowments should be important:

Vg(p, X) = 1

Yi(s) := Es[X7],  Zi(s) := Z2"T)(s),

withri =~,rn=1—-p+.
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Weighted utility

Verification theorem

Let g be given by weighted utility. Then a Type-II equilibrium is
given by

o(t)m = k() + ——=—[MZ1(t) + AaZa(t)],

p—2y p—2v

in which Z; and Z, is a solution of

d¥i(s) = — 5 [26)'CZ(5) + €12 (5)w(s)
+€_;;Z_ik(S) + by|k(s)|?| ds

+ Zi(s)dWs, i =1,2,
\ )71(7-) :VZ(T) = 07
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The model P*?

So far we assume P* is known and derive solutions from it.

Fact: most model-based solutions perform very badly in empirical
studies...

Average Portfolio Wealth Excluding Continuous Time Markowitz

Qlivares.Nadal—DeMiguel
4] — ssps00

wealth

»° »* = ° »° »° o o
date

»°

Figure: Taken from [Blanchet, Chen, and Zhou, 2021].
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Resolving model uncertainty (misspecification):
learning

Q-learning:

* Q"(x,a) :=J(t,x; T ®1 0);

e For some mp, try to use some parametrized function Fy (say,
network) to approximate Q™: Fy, ~ Q™;

* Update 7,1 so that m,41(X) € argmax,Fy, (X, a).
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In continuous time...

e Q7 is not well-defined: changing the strategy at a single time
instance does not affect pay-offs!

e The key step to continuous-time (reinforcement) learning is to
find a function to learn.

e [Jia and Zhou, 2023]:

_ et x,a) — Q™ (t,x, q)
Tt x,a) = |
q"(tx,0) Altmo At

e Stochastic control perspective:

q"(t,x,a) = oJ(t, x; ) + H(t, X, a,0J(t, X; 7), O (t, X; 7))
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g-learning of MFG/MFC

Because stochastic control theory of MFG/MFC has been
developed, g-learning framework of these problems can also be
devised.

e [Wei, Yu, and Yuan, 2024]: Use the representative agent’s
perspective to construct g-function and update policy = (t, x, ).

e But still need J(t, 1) (aggregate value function) in iterations.

e Allow p to be estimated from empirical samplings in algorithms
(decentralized learning).

e Several examples with exact parameterizations, including LQ
and non-LQ.
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Resolving model uncertainty (misspecification):
DRO

Model uncertainty: P* unknown. P" := %25)(, (empirical measure)
known.

DRO: find a " robust ” solution for any model P’ in a certain
candidate set. [Blanchet, Chen, and Zhou, 2021]: W(P',P") < 4.

Questions:

e |sP* in the candidate set? How many samples (n) do we need
to achieve "robustness™?

e Dynamic problems? (AW(-,-)?)

e Figure out why 1/n portfolio performs quite well in many
empirical tests?
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Thank you!

Personal Webpage: https://fy-yuan.github.io
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